Altera PHYLite Instrukcja Użytkownika

Przeglądaj online lub pobierz Instrukcja Użytkownika dla Urządzenia pomiarowe Altera PHYLite. Altera PHYLite User Manual Instrukcja obsługi

  • Pobierz
  • Dodaj do moich podręczników
  • Drukuj
  • Strona
    / 61
  • Spis treści
  • BOOKMARKI
  • Oceniono. / 5. Na podstawie oceny klientów
Przeglądanie stron 0
Altera PHYLite for Parallel Interfaces IP Core User
Guide
2015.01.16
ug_altera_phylite
Subscribe
Send Feedback
The Altera PHYLite for Parallel Interfaces IP core controls the strobe-based capture I/O elements in
Arria
®
10 devices. Use each instance of the IP core to support an interface with up to 18 individual data/
strobe capture groups. Each group can contain up to 48 data I/Os as well as the strobe capture logic.
Device Family Support
The Altera PHYLite for Parallel Interfaces IP core supports Arria
®
10 devices only.
For Arria V, Cyclone
®
V, and Stratix
®
V devices, use the ALTDQ_DQS2 IP core instead.
Related Information
ALTDQ_DQS2 IP Core User Guide
For more information about the ALTDQ_DQS2 IP core
Features
The Altera PHYLite for Parallel Interfaces IP core:
Supports input, output, and bidirectional data channels
Supports DQS-group based data capture, with up to 48 I/Os (including strobes) per group and DQS
gating/ungating circuitry for strobe-based interfaces
Supports output delays via interpolator
Supports dynamic on-chip termination (OCT) control
Supports quarter-rate to half-rate and half-rate to full-rate conversions. Also supports input, output,
and read/DQS/OCT enable paths
Supports single data rate (SDR) and double data rate (DDR) at the I/Os
Supports PHY clock tree
Supports dynamically reconfigurable delay chains using Avalon interface
Supports process, voltage, and temperature (PVT) or non-PVT compensated input and DQS delay
chains
Note:
The non-PVT compensated component of the input delay is not set in the Quartus II software
version 14.1 and will only be set in a future release of the Quartus II software.
©
2015 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are
trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as
trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance
of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information,
product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
specifications before relying on any published information and before placing orders for products or services.
ISO
9001:2008
Registered
www.altera.com
101 Innovation Drive, San Jose, CA 95134
Przeglądanie stron 0
1 2 3 4 5 6 ... 60 61

Podsumowanie treści

Strona 1 - Features

Altera PHYLite for Parallel Interfaces IP Core UserGuide2015.01.16ug_altera_phyliteSubscribeSend FeedbackThe Altera PHYLite for Parallel Interfaces IP

Strona 2 - Overview

Legend in Figure 9 Operation4 The strobe is optionally delayed to create a phase offset between the strobe and theinput data (for example, 90° phase s

Strona 3 - Related Information

Figure 12: Example Input (Quarter Rate DDR) - UnalignedI/O StandardsThe Altera PHYLite for Parallel Interfaces IP core allows you to set I/O standards

Strona 4 - Clock Frequency Relationships

I/O Standard Valid InputTerminations (Ω) (1)Valid OutputTerminations(Ω)(1)RZQ(Ω)Differential/Complementary I/OSupport1.2-V POD 34, 40, 48, 60, 80,120,

Strona 5 - Output Path

Figure 13: VREFInput Buffer+-VrefRRVCCNInternal VREF6 bits binary weighted resistors dividor6 bits Static VREF Code6 bits calibrated VREF code from Av

Strona 6 - Block Description

avl_writedata[5:0] % of VCCN000101 63.20%000110 63.84%000111 64.48%001000 65.12%001001 65.76%001010 66.40%001011 67.04%001100 67.68%001101 68.32%00111

Strona 7 - Output Path Data Alignment

avl_writedata[5:0] % of VCCN100100 83.04%100101 83.68%100110 84.32%100111 84.96%101000 85.60%101001 86.24%101010 86.88%101011 87.52%101100 88.16%10110

Strona 8 - Input Path

Related Information• Device Pin-Out FileFor specific DQS group numbers refer to the specific device Pin-Out fileReference ClockThe reference clock mus

Strona 9 - Legend in Figure 9 Operation

Timing ComponentsTable 9: Timing ComponentsCircuit Category TimingPathsSource Destination DescriptionSource Synchronousand optionallycalibrated (2)Rea

Strona 10 - Input Path Data Alignment

<variation_name>.sdcYou can find the location of the <variation_name>.sdc file in the .qip, which is generated during the IPgeneration. Th

Strona 11 - I/O Standards

Location DescriptionFPGA The Altera PHYLite for Parallel Interfaces IP core generation creates the clock settings for theuser core clock and the perip

Strona 12 - 2015.01.16

OverviewThe Arria 10 I/O subsystem is located in the I/O columns. Each column consists of up to 13 I/O banksand one I/O aux.Figure 1: I/O Column for A

Strona 13 - Resistor

Related InformationDynamic Reconfiguration on page 20For more information about using the dynamic reconfiguration feature to calibrate the I/O pathInt

Strona 14 - Calibrated VREF Settings

Figure 14: Logical RTL View to Physical Column PlacementThis figure shows an example of a daisy chain consisting of the Arria 10 External Memory Inter

Strona 15 - Placement Restrictions

Table 11: Address MapFeature Avalon Address R/WAddress CSR R Control ValueField RangePin OutputPhase{id[3:0],3'h2,lane_addr[7:0],pin{4:0],8'

Strona 16 - Dynamic Reconfiguration

Feature Avalon Address R/WAddress CSR R Control ValueField RangeStrobePVTcompensated inputdelay (3){id[3:0],3'h2,lane_addr[7:0],4'hC,lgc_sel

Strona 17 - Timing Constraints and Files

Feature Avalon Address R/WAddress CSR R Control ValueField RangeRead validdelay (3){id[3:0],3'h2,lane_addr[7:0],4'hC,9'h00C}{id[3:0],3&

Strona 18 - Timing Analysis

VCO MultiplicationFactorCore RateMinimum InterpolatorPhaseMaximum Interpolator Phase2Full 0x180 0xFFFHalf 0x100 0xFFFQuarter 0x380 0xFFF4Full 0x200 0x

Strona 19 - Timing Closure Guidelines

Figure 15: Lane and Pin Placement Dependent AddressesThis figure shows an example of a placed group with two lanes, 16 data pins and a differential st

Strona 20

Figure 16: Memory OverviewGroup 0 Pin 1 Group 0 Pin 0num_lanes[1:0],num_pins[5:0]Needed for pin address lookupsNeeded for simplifying strobe feature l

Strona 21 - Addressing

Legend in Figure 16 Description2 Retrieve number of groups in the interface (cache once per interface)• {id[3:0],24'h00E000} + {4'h0,pt_ptr[

Strona 22 - Field Range

Parameter Table ExampleFigure 17: Parameter Table ExampleThis figure shows an example of a design containing two Altera PHYLite interfaces, each with

Strona 23

Figure 2: 48-I/O Banks in Arria 10 DevicesThis figure shows a detailed view of the I/O bank in Arria 10 devices.2L2K2J2I2H2G2F2A3H3G3F3E3D3C3B3ATransc

Strona 24

Figure 18: Avalon ControllerThe input interface is as follows:avl_in_address[31:0] ={8'h00,interface_id[3:0],grp[4:0],pin[5:0],csr[0],register[7:

Strona 25 - Address Look-Up

Register[7:0] Pin[5:0] Csr[0] AvalonR/WCSR R/W R/W Data on avl_readdata/avl_writedataAVL_CTRL_REG_DQS_EN_DELAY0 R: 0/1W: 0R/W R {26'h0000000,dqs_

Strona 26 - Component Description

GUI Name Values DescriptionGeneral Tab- these parameters are set on a per interface basisClocksMemory clock frequency 100 MHz - 1333.333MHzExternal me

Strona 27 - 32-bits (4 Byte Addresses)

GUI Name Values DescriptionDesired Frequency — Specifies the output clock frequency of thecorresponding output clock port, outclk[], inMHz. The defaul

Strona 28

GUI Name Values DescriptionI/O standardSSTL-12SSTL-125SSTL-135SSTL-15SSTL-15 Class ISSTL-15 Class IISSTL-18 Class ISSTL-18 Class II1.2-V-HSTL Class I1

Strona 29 - Parameter Table Example

GUI Name Values DescriptionRead latency 1 to 63 externalinterface clock cyclesExpected read latency of the external device inmemory clock cycles. The

Strona 30

GUI Name Values DescriptionUse separate strobes —Separate the bidirectional strobe into input andoutput strobe pins. Using separate strobes is onlyava

Strona 31 - Parameter Settings

Read LatenciesTable 17: Read LatenciesThis table list the read latencies.VCO FrequencyMultiplicationFactorCore Clock Rate SettingFull-Rate Half-Rate Q

Strona 32 - GUI Name Values Description

Output Path SignalsTable 19: Output Path SignalsOutput path signals are signals that are available when you set the Pin Type parameter to either Outpu

Strona 33

Signal Name Direction Width Descriptiondata_out_n/data_io_nOutput/Bidirectional1 to 24 Negative data output from pinenabled when data configura‐tion i

Strona 34

Clock Domain DescriptionCore clock This clock is generated internally by the IP core and output to the core to be used forall transfers between the FP

Strona 35

Input Path SignalsTable 20: Input Path SignalsInput path signals are signals that are available when you set the Pin Type parameter to Input or Bidire

Strona 36

Signal Name Direction Width Descriptionstrobe_in/strobe_ioInput/Bidirectional1Positive strobe from pin. If the pintype is set to Input, the strobe_ins

Strona 37 - Read Latencies

Signal Name Direction Width Descriptionavl_readdata_valid Output 1 Indicates that read data has returned.avl_waitrequest Output 1 Stalls upstream logi

Strona 38 - Output Path Signals

Generating Example DesignYou can generate a example design by clicking Example Design in the IP Parameter Editor.The software generates a user defined

Strona 39

Figure 19: High-Level View of the Simulation Example Design with One GroupThis figure shows a high-level view of the simulation example design with on

Strona 40 - Input Path Signals

Therefore, when migrating from the ALTDQ_DQS2 IP core to the Altera PHYLite for Parallel InterfacesIP core, you must:• Configure the Altera PHYLite fo

Strona 41

Figure 21: ALTDQ_DQS2 IP Core Parameter for Stratix V DevicesCommon ParametersTable 23: Common ParametersThis table lists the common parameters for th

Strona 42 - Example Design

ALTDQ_DQS2 IP core Altera PHYLite for Parallel Interfaces IP coreDifferential/Complementary output strobeNote: Supports single, complementary, anddiff

Strona 43 - Generating Example Design

Figure 23: Additional Parameter in Group TabTable 24: Additional Parameters in the Altera PHYLite for Parallel Interfaces IP CoreParameter Description

Strona 44

Parameters for ALTDQ_DQS2 IP Core OnlyThe following figures and table show the parameters supported in the ALTDQ_DQS2 IP core but not inAltera PHYLite

Strona 45

InterfaceFigure 4: Top-Level InterfaceThis figure shows the top-level diagram of the Altera PHYLite for Parallel Interfaces IP core interface.PLLI/O L

Strona 46 - Common Parameters

Table 25: ALTDQ_DQS2 IP Core Specific ParametersSection Parameter DescriptionGeneral SettingsExtra output-only pins This option is commonly used as da

Strona 47

Section Parameter DescriptionCapture StrobeUse capture strobe enable blockYou cannot access the capture strobe in theAltera PHYLite for Parallel Inter

Strona 48 - Parameter Description

To begin, follow these steps:1. In the Quartus II software version 14.0a10, open the nand_flash_example_14.0a10.qar.2. In the Quartus II dialog box, c

Strona 49

Synchronous Signals DescriptionCMD/ADDR signals (outputfrom FPGA, input to memory)Signal Type DescriptionALE Input Address latch enable. Loads an addr

Strona 50 - Section Parameter Description

Figure 27: ALTDQ_DQS2 Settings for Bidirectional Type DQ and DQSNote: The DQS enable block must be enabled for NAND Flash, which has bidirectional str

Strona 51

The following figure shows the RTL viewer for a NAND Flash simple design based on the ALTDQ_DQS2IP core from this implementation.Figure 29: RTL viewer

Strona 52 - Signal Type Description

Figure 30: General Tab SettingsFigure 31: Group 0 settings (Bidirectional type for DQ and DQS)56Implementation using the Altera PHYLite for Parallel I

Strona 53

Figure 32: Group 1 settings (Output type for Addr/Cmd)Figure 33: Group 2 settings (Input type for the Ready signal)The following figure shows the RTL

Strona 54

Figure 34: RTL Viewer for a NAND Flash Simple Design Based on the Altera PHYLite for ParallelInterfaces IP Core58Implementation using the Altera PHYLi

Strona 55

Manual Migration between ALTDQ_DQS2 and Altera PHYLite for Parallel Interfaces IP CoresFigure 35: Migration Process Overview for the NAND Flash Simple

Strona 56

Figure 5: Output PathThis figure shows the output path for the Altera PHYLite for Parallel Interfaces IP core.Write FIFOdata_io data_outoe_outoct_outI

Strona 57

Table 27: Connecting Similar or New SignalsSignal Descriptionrdata_en In the Altera PHYLite for Parallel Interfaces IP core, this signal is similar bu

Strona 58 - Interfaces IP Core

Date Version ChangesDecember,20142014.12.30• Updated the name of the IP core from Altera PHYLite forMemory to Altera PHYLite for Parallel Interfaces.•

Strona 59 - Signal Description

Figure 6: Output Path - Write Latency 0These figures show the waveform diagrams for the output path.Figure 7: Output Path - Write Latency 3Related Inf

Strona 60 - Document Revision History

Figure 8: Example Output for Quarter Rate DDRRelated Information• External Memory Interface HandbookFor more information about the AFI 3.0 specificati

Strona 61 - Date Version Changes

Table 3: Blocks in Data, Strobe, and Read Enable PathsThis table lists the information about these paths.Path DescriptionData Path Consists of a PVT c

Komentarze do niniejszej Instrukcji

Brak uwag